‘beginr’ is a collection of useful functions for R beginners, including hints for the arguments of the ‘plot()’ function, self-defined functions for error bars, user-customized pair plots and hist plots, enhanced linear regression figures, etc.. This package could be helpful to R experts as well.
# stable version on CRAN
install.package("beginr")
# or development version on GitHub
devtools::install_github("pzhaonet/beginr")
If you often forget the options for pch
, lty
, type
, and col
when you plot()
, you can run plotpch()
, plotlty()
, plottype()
, plotcolors()
, and plotcolorbar()
. No need to search the internet any more.
beginr::plotpch()
beginr::plotlty()
beginr::plottype()
beginr::plotcolors()
beginr::plotcolorbar()
Linear regression is often used in scientific work, but it is annoying to display the results. In R you have to run lm()
, plot()
, abline()
, text()
and so on and so forth. Now with ‘beginr’ you only have to run plotlm()
.
x <- 1:10
y <- 1:10 + rnorm(10)
beginr::plotlm(x, y)
## [[1]]
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8826021 0.59514844 -1.482995 1.763634e-01
## x 1.1693736 0.09591686 12.191533 1.899987e-06
##
## [[2]]
## [1] 0.9489254
If you want to display the distribution of a data-set, use plothist()
, which gives you a histogram with markers of the median, mean, quantiles, standard deviation, sample number and the skewness.
x <- rnorm(10000)
beginr::plothist(x)
## para value
## 1 min -3.9594329262
## 2 1q -0.6743155802
## 3 median 0.0151220580
## 4 3q 0.6806285656
## 5 max 4.1576382225
## 6 lower -2.7065331755
## 7 upper 2.7128461609
## 8 mean -0.0005589431
## 9 sd 1.0064399683
I like pairs()
, and ‘beginr’ gives more powerful features to plotpairs()
and plotpairs2()
.
df <- data.frame(a = 1:10, b = 1:10 + rnorm(10), c = 1:10 + rnorm(10))
beginr::plotpairs(df)
beginr::plotpairs2(df)
## [1] "p<0.01"
## [1] "p<0.01"
## [1] "p<0.01"
I often have to plot one independent variable (x) and multiple dependent variables (y1, y2, …, yn) in one 2-D coordinate system, or one dependent variable (y) against multiple independent variables (x1, x2, …, xn) with their error bars. Use dfplot()
or dfplot2()
in ‘beginr’.
x <- seq(0, 2 * pi, length.out = 100)
y <- data.frame(sin(x), cos(x))
yerror <- data.frame(abs(rnorm(100, sd = 0.3)), abs(rnorm(100, sd = 0.1)))
beginr::dfplot(x, y, yerror = yerror)
beginr::dfplot2(y, x, xerror = yerror)
If you would like to add errorbars only, then use errorbar()
.
x <- seq(0, 2 * pi, length.out = 100)
y <- sin(x)
plot(x, y, type = "l")
beginr::errorbar(x, y, yupper = 0.1, ylower = 0.1)
lmdf()
performs the linear regression between every two columns in a data frame.
df <- data.frame(a = 1:10, b = 1:10 + rnorm(10), c = 1:10 + rnorm(10))
beginr::lmdf(df)
## x y r.squared adj.r.squared intercept slope Std.Error.intercept
## 1 a b 0.9630442 0.9584247 -0.7901086 1.1271749 0.4843895
## 2 a c 0.8568806 0.8389907 -0.3427519 1.0425054 0.9346580
## 3 b a 0.9630442 0.9584247 0.8783157 0.8543876 0.3749251
## 4 b c 0.8157952 0.7927696 0.6004724 0.8856059 0.9426967
## 5 c a 0.8568806 0.8389907 1.0688792 0.8219436 0.7466774
## 6 c b 0.8157952 0.7927696 0.4432909 0.9211717 0.9729768
## Std.Error.slope t.intercept t.slope Pr.intercept Pr.slope
## 1 0.07806644 -1.6311430 14.438661 0.14150586 5.177385e-07
## 2 0.15063377 -0.3667137 6.920795 0.72334232 1.219459e-04
## 3 0.05917360 2.3426432 14.438661 0.04722045 5.177385e-07
## 4 0.14878374 0.6369730 5.952303 0.54193651 3.410966e-04
## 5 0.11876434 1.4315142 6.920795 0.19016727 1.219459e-04
## 6 0.15475888 0.4556027 5.952303 0.66078732 3.410966e-04
There are two functions as improvements of tapply()
for factor calculation.
beginr::tapplydf()
beginr::tapplydfv()
readdir()
reads multiple files into a list.
beginr::readdir()
writefile()
avoids overwriting the files which already exist.
beginr::writefile()
list2ascii()
saves a list as a text file.
alist <- list(a = 1:10, b = letters)
beginr::list2ascii(alist)
bib()
creates bibliographic entries as texts or a file (‘.bib’).
beginr::bib(pkg = c("mindr", "bookdownplus", "pinyin", "beginr"))
## @Manual{R-beginr,
## title = {beginr: Functions for R Beginners},
## author = {Peng Zhao},
## year = {2017},
## note = {R package version 0.1.0},
## url = {https://github.com/pzhaonet/beginr},
## }
## @Manual{R-bookdownplus,
## title = {bookdownplus: Generate Varied Books and Documents with R 'bookdown' Package},
## author = {Peng Zhao},
## year = {2017},
## note = {R package version 1.2.2},
## url = {https://github.com/pzhaonet/bookdownplus},
## }
## @Manual{R-mindr,
## title = {mindr: Convert Files Between Markdown or Rmarkdown Files and Mindmaps},
## author = {Peng Zhao},
## year = {2017},
## note = {R package version 1.1.0},
## url = {https://github.com/pzhaonet/mindr},
## }
## @Manual{R-pinyin,
## title = {pinyin: Convert Chinese Characters into Pinyin},
## author = {Peng Zhao},
## year = {2017},
## note = {R package version 1.1.0},
## url = {https://github.com/pzhaonet/pinyin},
## }
plotpkg()
displays a figure showing the downloads of packages.
beginr::plotpkg("beginr", from = "2017-06-23")
rpkg()
creates a new R package in an easy way.
beginr::rpkg()
packr()
.readdir()
.plothist()
improved.plotcolorbar()
and plotpkg()
.rpkg()
to create a skeleton for creating a new R package.Zhao, Peng. 2017. Beginr: Functions for R Beginners. https://github.com/pzhaonet/beginr.